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Abstract: We experimentally demonstrate a multi-stage wavelength locking scheme based on saddle 

point searching in a dual-ring based 4×4 electro-optic switch. Three-stage switching elements can be 

aligned to the signal wavelength with initial ≤2-nm wavelength misalignments. 
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 INTRODUCTION 

Driven by the ever-increasing global data traffic, optical switching has emerged as a promising candidate to provide 

high switching capacity, low signal latency, and low power consumption [1]. Typically, a wavelength division 

multiplexed (WDM) switch fabric is achievable with multiple single-wavelength switching layers [2]. Therefore, resonant 

devices can be used as the basic building blocks of optical switches. Furthermore, resonant devices may offer several key 

advantages including compact footprint, relatively low power consumption, and sharp spectral selectivity [3]. The main 

shortcoming of resonator-based switches is their high sensitivity to fabrication errors and temperature variations. To solve 

the problem of wavelength misalignments in a large-scale switch fabric, automated wavelength locking of the resonators 

is needed [3]. Most of the existing automated wavelength locking methods were demonstrated in optical modulators and 

filters (e.g., [4], [5]), which may not work for switching elements with dual inputs. Recently, we proposed a saddle-point-

searching (SPS) algorithm for the wavelength locking of dual-input switching elements based on dual-ring resonators [6]. 

The SPS algorithm was later optimized to enable the wavelength locking over a full free spectral range (FSR) [7]. 

However, the improved SPS algorithm was only demonstrated in a single 2 × 2 switching element. 

In this paper, we present an extended experimental demonstration of the improved SPS algorithm in a dual-ring based 

4 × 4 silicon electro-optic (EO) switch. Compared to the demonstration in [7], a multi-channel control subsystem is 

required, together with optimizations of the locking parameters for achieving enhanced fabrication tolerance. The 4 × 4 

switch employs Benes architecture and therefore consists of three-stage switching elements. The control subsystem can 

lock the three-stage switching elements to the signal wavelength, provided that the initial wavelength misalignments are 

less than 2 nm. 

 DEVICE STRUCTURE AND SUBSYSTEM CONFIGURATION 

Fig. 1(a) shows the schematic diagram of the 4 × 4 switch and the control sub-system. The switch comprises of six 

switching elements. For each switching element, its resonance wavelength is affected by fabrication errors and 

temperature variations, hence a feedback loop is used to realize wavelength locking. Specifically, the monitored 

photocurrent signal from the switch chip is amplified by a trans-impedance amplifier (TIA), and then sent to a digital 

signal processor (DSP). With the SPS-based wavelength locking algorithm, a thermo-optic (TO) tuning signal with a 

controlled tuning power is applied to the switching element. In addition, the on/off control of each switching element is 

realized by the subsystem. Fig. 1(b) shows the device structure of the switching element. The device contains two coupled 

ring resonators, and each ring resonator is integrated with a micro-heater, a p-i-n diode, and a directional coupler for 

power monitoring. Germanium photodiodes are also integrated to detect the monitored optical signals. 

   
Fig. 1.  (a) Schematic diagram of the 4 × 4 switch and the control sub-system. (b) Device structure of the switching element. SE: switching element. 

ADCs: analog-to-digital converters. DACs: digital-to-analog converters. 
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 DEVICE DESIGN, FABRICATION, AND PACKAGING 

The device layouts of the 4 × 4 silicon EO switch and the switching element are shown in Fig. 2(a) and (b), respectively. 

The switch operates in O band. It consists of six switching elements, two crossings, and eight grating couplers spaced by 

127 μm. The footprint of the 4 × 4 switch is 4.0 mm × 1.4 mm. In the switching element, each ring resonator has a radius 

of 10 μm, and correspondingly an FSR of 6 nm at 1310 nm. The gap parameters are gap1 = 220 nm, gap2 = 370 nm, gap3 

= 250 nm. The two p-i-n diodes in each switching element are controlled by a same EO tuning signal to reduce the device 

footprint and the number of control signals. The device was fabricated through a one-to-one run in IME Singapore. 

Afterwards, electrical packaging and optical packaging were performed in order, with the photographs shown in Fig. 2(c) 

and (d). All the metal pads of the switch are connected to the control PCB through wire bonding. A 10-channel 127-μm-

pitch fiber array based on vertical coupling is used to couple the lights into and out of the switch. The fiber array is 

mounted on the switch chip by using ultra-violet (UV) light curable adhesive. The coupling loss is ~5 dB/facet. 

 
Fig. 2.  (a) Layout of the 4 × 4 silicon EO switch. (b) Layout of the switching element. (c) Photograph of the switch after electrical packaging. (d) 

Photograph of the switch after optical packaging. PD: photodiode. 

 EXPERIMENTAL RESULTS 

The experimental setup is presented in Fig. 3. A continuous wave light at 1306 nm from an O-band laser source is 

adjusted by a polarization controller to be TE-polarized, and then injected into the switch chip. The initial resonance 

wavelengths of the ring resonators are in the range of 1304−1305 nm. In the experiment, we tested one input port and 

one output port at a time. The output light is split into two parts, for Labview-controlled power monitoring and real-time 

power monitoring, respectively. In the control subsystem, there are twelve TIAs for amplifying the photocurrent signals. 

The amplified signals are sampled by twelve 10-bit ADCs (TLC1543), with the sampled data sent into a commercial 

single-core processor (STM32F407) operating at 168 MHz. Both the wavelength locking algorithm and the on/off control 

are realized in the processor via C code. To achieve the TO tuning operations, twelve TO tuning signals are generated by 

8-bit DACs (TLC5628) and the following drivers. To realize the fast switching, the processor also produces six square-

wave drive signals, with their 10%−90% switching times of ~2 ns. To test the wavelength locking algorithm in different 

optical paths, the processor is also connected to a computer that determines the routing state of each switching element. 

The wavelength locking algorithm is based on our previously reported algorithm [7], which consists of a coarse searching 

process and three fine searching processes. However, there are several differences between the two algorithms in terms 

of the locking parameters. Firstly, the new algorithm supports multiple locking channels, i.e., it can control all the twelve 

ring resonators in order. Secondly, the thermal feedback control period is set to 100 μs, which is twice that of our 

previously reported algorithm to reduce more noise in the sampled signal. Thirdly, with the larger scale of the switch, 

 
Fig. 3. Experimental setup. PC: polarization controller. 
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more fabrication errors are induced. To improve the fabrication tolerance, the TO tuning ranges in the fine searching 

processes are set to three or four times as large as that in [7]. 

The wavelength locking is demonstrated for three different optical paths of the switch, with the optical paths and the 

measured transmission spectra shown in Fig. 4(a), (b), and (c), respectively. For each optical path, the three cascaded 

switching elements in the path are aligned to the signal wavelength, whereas the other switching elements are not 

thermally tuned. Hence, the optical power at the designated output port is maximized. For example, in Fig. 4(a), the input 

light is sent into I1 port, and the switching elements SE1, SE3 and SE6 are locked to 1306 nm, therefore the optical power 

at O4 port is maximized. This switch exhibits high insertion losses and severe crosstalk, because the gap parameters of 

the dual-ring resonators were not properly designed. With the wavelength locking, the minimal operation bandwidth 

among the three optical paths is 0.25 nm. Fig. 4(d) shows the fast switching results measured after the wavelength locking. 

The routing states of SE2, SE4 and SE5 are simultaneously tuned between the bar state and the cross state by EO tuning. 

An extinction ratio of 25 dB at O1 port is therefore achieved, and the 10%−90% switching times for the rise edge and the 

fall edge are 19 ns and 13 ns, respectively. 

 
Fig. 4. (a)−(c) Three different optical paths (red lines) and the transmission spectra measured after wavelength locking. (d) Routing configuration, 

transmission spectra w/ and w/o EO tuning, and response signal waveform. 

 CONCLUSIONS 

We experimentally demonstrated the three-stage wavelength locking in a dual-ring based 4 × 4 silicon EO switch. By 

using a multi-channel control subsystem and an optimized SPS algorithm, the three-stage switching elements are aligned 

to the signal wavelength with the initial wavelength misalignments of ≤ 2 nm. 
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